Inner clot diffusion and permeation during fibrinolysis.
نویسندگان
چکیده
A model of fibrinolysis was developed using multicomponent convection-diffusion equations with homogeneous reaction and heterogeneous adsorption and reaction. Fibrin is the dissolving stationary phase and plasminogen, tissue plasminogen activator (tPA), urokinase (uPA), and plasmin are the soluble mobile species. The model is based on an accurate molecular description of the fibrin fiber and protofibril structure and contains no adjustable parameters and one phenomenological parameter estimated from experiment. The model can predict lysis fronts moving across fibrin clots (fine or coarse fibers) of various densities under different administration regimes using uPA and tPA. We predict that pressure-driven permeation is the major mode of transport that allows for kinetically significant thrombolysis during clinical situations. Without permeation, clot lysis would be severely diffusion limited and would require hundreds of minutes. Adsorption of tPA to fibrin under conditions of permeation was a nonequilibrium process that tended to front load clots with tPA. Protein engineering efforts to design optimal thrombolytics will likely be affected by the permeation processes that occur during thrombolysis.
منابع مشابه
Plasma homocysteine affects fibrin clot permeability and resistance to lysis in human subjects.
OBJECTIVE Homocysteine (Hcy) is a risk factor for thrombosis. We investigated a hypothesis that the clot permeability and its resistance to fibrinolysis is associated with plasma total Hcy (tHcy) in human subjects. METHODS AND RESULTS We studied healthy men not taking any medication (n=76), male patients with advanced coronary artery disease (CAD) taking low-dose aspirin (n=33), men with diab...
متن کاملStructure and Function of Trypsin-Loaded Fibrinolytic Liposomes
Protease encapsulation and its targeted release in thrombi may contribute to the reduction of haemorrhagic complications of thrombolysis. We aimed to prepare sterically stabilized trypsin-loaded liposomes (SSLT) and characterize their structure and fibrinolytic efficiency. Hydrogenated soybean phosphatidylcholine-based SSLT were prepared and their structure was studied by transmission electron ...
متن کاملCo-ordinated spatial propagation of blood plasma clotting and fibrinolytic fronts
Fibrinolysis is a cascade of proteolytic reactions occurring in blood and soft tissues, which functions to disintegrate fibrin clots when they are no more needed. In order to elucidate its regulation in space and time, fibrinolysis was investigated using an in vitro reaction-diffusion experimental model of blood clot formation and dissolution. Clotting was activated by a surface with immobilize...
متن کاملDisaggregation of in vitro preformed platelet-rich clots by abciximab increases fibrin exposure and promotes fibrinolysis.
The glycoprotein IIb/IIIa receptor inhibitor abciximab has been shown to facilitate the rate and the extent of pharmacological thrombolysis with recombinant tissue plasminogen activator (rtPA) in patients with acute myocardial infarction. However, the underlying mechanisms remain not fully determined. We sought to demonstrate that this facilitating effect of abciximab could be related to its po...
متن کاملبررسی تاثیر عناصر مس، روی و آلومینیوم بر شاخصهای انعقاد و فیبرینولیز
Introduction: Myocardial infarction as a leading cause of death in most populations is associated with blood clot formation in coronary artery, and rapid clot lysis is important for patient treatment. Some reports have indicated the effects of some trace elements on blood coagulation and clot lysis. The aim of this study was to evaluate the effects of zinc, copper and aluminum on in-vitro coagu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 65 6 شماره
صفحات -
تاریخ انتشار 1993